

1

Data Mining

Chapter 5. Credibility: Evaluating What's Been Learned

Evaluating how different methods work

Evaluation

- Large training set: no problem
- Quality data is scarce.
 - Oil slicks: a skilled & labor-intensive process
 - Credit card application: 1,000 training examples
 - Electricity supply data: few days / 15 years
 - Electromechanical diagnosis: 300 examples / 20 years

Training and testing

Classifier's performance

- Error rate
- Resubstitution error
 - Resubstituting the training instances into a classifier
 - Useful to know
- Test set
 - Assumption : both the training data and the test data are "representative samples"

Training and testing

- Training, validation, and test data
 - training \rightarrow validation \rightarrow test
 - Validation data is bundled back into the training data.
 - Test data is bundled back into the training data.

A limited dataset

Holdout procedure

Bernoulli process

- A succession of independent events that either succeed or fail
- e.g.) coin tossing: an independent event
 - Head: success, Tail: failure
 - True(unknown) success rate: P
 - The number of trials: N
 - The number of successes: S
 - The observed success rate: $f = \frac{S}{N}$

The Bernoulli distribution

- Mean: P (success rate)
- Variance: P(1-P)
- Expected success rate: $f = \frac{S}{N}$
- Variance with N trials: $\frac{P(1-P)}{N}$

N trials

A single Bernoulli trial

- The probability
 - A random variable : X
 - $P_r [-z \le X \le z] = c$ where 2z is confidence range

- One-tailed probability
 - $P_r[X \ge Z]$: upper tail
 - $P_r [X \le -Z]$: lower tail

The same

• e.g.) P_r [X ≥ Z] : 5%

 There is a 5% chance that X lies more than 1.65 standard deviations above the mean (refer to Table 5.1)

 $-P_r [-1.65 \le X \le 1.65] = 90\%$

Bernoulli distribution

•
$$P_r \left[-Z < \frac{f-P}{\sqrt{\frac{P(1-P)}{N}}} < Z \right] = C$$

- f: random variable (x or expected success rate)

$$-\sqrt{\frac{P(1-P)}{N}}$$
 = variance with N trials

$$- \mathsf{P} = (\mathsf{f} + \frac{Z^2}{2N} \pm Z \sqrt{\frac{f}{N} - \frac{f^2}{N} + \frac{Z^2}{4N^2}}) / (1 + \frac{Z^2}{N})$$

• e.g.)

- If f=75% (success rate), N=1,000 and C=80% (confidence) (z=1.28),
 then P = [0.732, 0.767].
 → 73.2% < P < 76.7%
- If f=75%, N=100, C=80%
 then P = [0.691, 0.801]
 → 69.1% < P < 80.1%

Cross-validation

- When the amount of data for training and testing is limited
- Holdout method
 - Testing : 1/3 data
 - Training : 2/3 data
- Repeated holdout
 - Average error rates → an overall error late!

Cross-validation

- A fixed number of folds
 - Folds : "partitions" of data
- e.g.) threefold cross-validation (3 parts)
 - 2/3 folds : training

– 1/3 folds : testing _

- 10 fold cross-validation (10 parts)
- 9/10 : training -
- 1/10 : testing
- A total of 10 times on different training sets

10번 시행

 10 error estimates are averaged to yield an overall error estimate

3번 시행

Leave-one-out cross validation

n-fold cross-validation

where n: the number of instances in the dataset

- Each instance in turn is left out.
- Learning scheme is trained on all the remaining instances.
- The results of all n judgments are averaged. \rightarrow the error estimate
- Advantages
 - The greatest possible amount of data is used for training in each case.
 - The procedure is deterministic \rightarrow no random sampling
- Disadvantages
 - High computational cost
 - No stratification: test vs training

The bootstrap

- Sampling the dataset with replacement to form a training set
 - Most learning methods can use the same instance twice.
- 0.632 bootstrap
 - Being picked for the training set : 1/n probability
 - Not being picked for the training set : (1-1/n) probability
 - The number of picking opportunities : n

 The chance that a particular instance will not be picked for the training set :

$$-(1-\frac{1}{n})^{n} \approx e^{-1} = 0.368$$

where $e = 2.7183$

- Test set : 36.8% of the instances
- Training set : 63.2% the instances
- Some instances will be repeated in the training set, bringing it up to a total size of n.

- Bootstrap vs cross-validation
 - Bootstrap : 63%
 - 10-fold cross-validation : 90%
 - Boot strap error estimate
 - $e = 0.632 \text{ X} e_{\text{test instances}} + 0.368 \text{ X} e_{\text{training instances}}$
 - The whole bootstrap procedure is repeated several times, with different replacement samples for the training set, and the results averaged.

Comparing data mining methods

Analysis of variance

- Deciding whether observed differences among more than two sample means can be attributed to chance, or whether there are real differences among the means of the populations sampled.
- F distribution with k-1 and k(n-1) degrees of freedom
 - We reject the null hypothesis that the population means are all equal, if the value we obtain for *f* exceeds $f_{\alpha, k-1, k(n-1)}$, where α is the level of significance.

Thank You

http://cis.catholic.ac.kr/sunoh