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This paper investigates the autonomous decision-making process of threat detection, classiÞcation,
and the selection of alternative countermeasures against threats in electronic warfare settings. We
introduce a threat model that represents a speciÞc threat pattern and also present a methodology
that compiles the threat into a set of rules using soft computing methods. This methodology,
which is based upon the inductive threat model, could be used to classify real-time threats.
Furthermore, we calculate the expected utilities of countermeasures that are applicable given a
situation and provide an intelligent command and control agent with the best countermeasure to
threats. We summarize empirical results that demonstrate the agent�s capabilities of detecting and
classifying threats and selecting countermeasures to them in simulated electronic warfare settings.
C© 2010 Wiley Periodicals, Inc.

1. INTRODUCTION

To counter-threats in electronic warfare environments, a command and control
agent needs to detect, classify, and autonomously execute countermeasures against
such threats for ensuring continual functionality despite potential danger. This paper
investigates the whole decision-making process of threat detection, classiÞcation,
and the selection of alternative countermeasures against threats. For a threat detec-
tion and classiÞcation, our agents advocate soft computing techniques,1 and for the
decision of countermeasures to the threats, they adopt a decision-theoretic architec-
ture. Our agents thusmake use of both architectures of learning and decision theory.2

Autonomous situation awareness perceives information about dynamically
changing environment and accumulates the information to knowledge bases. Its
ultimate step is to analyze the knowledge to predict what will happen in imminent
future states. The process comes to involve tracking and identifying the state of
a complex-distributed environment. It is not a reßexive response to an immediate
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environment but a complex intelligence to make the knowledge operational. Au-
tonomous situation awareness, thus, is a more critical component of adaptive knowl-
edge formulation in urgent situations. It is widely applicable in areas such as battle-
ground scenarios, trafÞc situations, and any kinds of disaster situations, e.g., Þres,
earthquakes, radiation accidents, and so on.3−6

We propose a threat detection and classiÞcation mechanism through soft
computing algorithms, i.e., inductive decision-tree algorithms,7 naṏve Bayesian
classiÞer,8,9 and neural networks.1 To identify threats that our agents face, we
endow them with a tapestry of reactive rules.4 The reactive rules are constructed
by compiling threat systems and their attributes into state-action rules. The compi-
lation process exploits the regularities of threats, if any, and enables our agents to
detect them. The compiled rules performed ofßine can be obtained from soft com-
puting algorithms, which use the threat information as their inputs. Furthermore, it
is desirable that each of the compilation methods should be assigned a measure of
performance that compares it to the benchmark. The various compilations available
constitute a spectrum of approaches to make identiÞcations and detections under
various attacks in electronic warfare settings, and these compilations enable our
agents to be aware of situations.

To distinguish dangerous situations from safe situations, we extract features
from various types of threats in the simulated air combat scenarios using soft
computing techniques. Applying soft computing algorithms for rule extraction has
been used to detect speciÞc phenomena in many domains10,11 but, to our best
knowledge, it might be the Þrst attempt for the detection of threats at military
scenarios. In our framework, the soft computing algorithms compile the instances of
the threat system and their attributes into a set of reactive rules. Our approach allows
us to model threat systems in battleÞeld situations and avoids critical situations
that might be irrevocable. We present an inductive model of threat systems, and our
compilation methods can appreciably shorten the response time between a condition
occurrence and its recognition.

The next step, further, is to equip our command and control agent with the
ability to dynamically and rationally select countermeasures against threats. Our
agent will follow the decision theory,2 which calculates the expected utilities of
alternatives. The agents will Þnally succeed in completing their tasks by executing
the best countermeasure, which has the maximum expected utility. Since the prop-
erties of electronic warfare environments are unforeseen, partially accessible, and
continuously changing, the protocol-based approaches could not be applied to our
setting. Applying the decision theory to selecting the countermeasures at military
scenarios might be the Þrst attempt to our best knowledge, and it might be a robust
approach in battleÞeld situations.

In the following section,wewill show clearly factors that indicate the symptoms
of various threat systems and then design the intelligent command and control agent,
which is operational in electronic warfare settings. Section 3 describes our agent�s
decision-making process of threat detection, classiÞcation, and the optimal selection
of alternative countermeasures. Section 4 validates our framework empirically and
presents the experimental results. In conclusion,we summarize our result and discuss
further research issues.
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2. ANALYZING THREATS IN ELECTRONIC WARFARE SETTINGS

To improve the survivability of our agents in battleÞeld settings and to enable
them to successfully perform their mission, we extract features from various threat
systems and design a command and control agent that operates autonomously.12,13

2.1. Analyzing Threats

Our agents detect their potential threats through their sensors: radar, laser,
and infra-red. The threats could be classiÞed into �terminal� and �nonterminal�
threats.12,14,15 The terminal threats are intended to directly shutdown our agents,
whereas the nonterminal threats are preliminary operations to enhance the capa-
bility of the terminal threat systems. The terminal threats consist of �static� and
�mobile� lethal objects. The static terminal threats are antennas, power lines, build-
ings, and so on. On the other hand, themobile terminal threats are missiles, guns, and
rockets. The nonterminal threats include searching, tracking, and taking electronic
countermeasures against communication systems.16−18

Some of the attributes contained in agents� knowledge bases (KBs) when they
interact in battleÞeld scenarios are summarized in Table I. The attributes in Table I
are selected to effectively distinguish between the threat types and the threat levels
among all possible attributes. The attributes that should be considered regarding
the threats detected by radar sensors are predominant and can be easily picked up,
whereas those of the threats identiÞed through laser sensors are usually limited.
Since infra-red (IR) sensors have no range information and strongly depend on
atmospheric conditions,15,19 the usage of IR sensors is restricted. However, the
radar sensors are durable under all weather conditions and the attributes involving
radar sensors are actively considered for the nonterminal and the terminal threats. As
shown in Table I, the attributes acquired from radar sensors are radar frequency, pulse
width, pulse power, and pulse repetition frequency. The other attributes, i.e., pulse
repetition frequency and guidance type, characterize the terminal threats conÞrmed
by laser sensors.

Table I. Relevant attributes in electronic warfare settings.

Receiver Types Attributes Values Threat Types

Radar Radar frequency 30�8,000 MHz Nonterminal
Pulse width 0.8�5 ms
Pulse power 10�500 KW
Pulse repetition frequency 1�666 KHz

Radar Radar frequency 8,000�40,000 MHz Terminal
Pulse width 0.1�0.8 ms
Pulse power 1�50 KW
Pulse repetition frequency 333�1,000 KHz

Laser Pulse repetition frequency 0.1�20 KHz Terminal
Guidance type Range Þnder,

Target designator,
Beam rider

Infra-red Target coordination x, y, z Nonterminal/terminal
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Figure 1. Decision-making process of threat identiÞcation, threat classiÞcation, and the selection
of countermeasures against threats.

2.2. Designing Command and Control Agent

Our aim is to design autonomous agents that quickly respond to threat systems
represented by the above attributes in Table I, while operating in real-time electronic
warfare settings. The Þrst step toward this end is to integrate the symptoms of threat
systems and to detect and identify the threat systems themselves.We then classify the
threats into terminal and nonterminal ones based upon categories compiled during
ofßine. The Þnal step of the command and command module is to dynamically
decide the best countermeasure against threats using the computation of expected
utilities in conjunction with online reasoning. The intelligent command and control
agent that achieves our goal is illustrated in Figure 1.

For the intelligent command and control agent, we propose a brokering agent
architecture that consists of (1) an information collecting and processing agent that
gathers the signatures of threat systems, (2) an adaptive reasoning agent that detects
threat systems upon the pre-compiled protocols, and (3) a decision-theoretic agent
that Þnally executes the best countermeasure among alternatives. This architecture,
as shown in Figure 1, allows our autonomous agents to quickly recognize a current
situation using the precompiled protocols and to actively remove potential adversities
with robust autonomy through the calculation of expected utilities. The fast report
of the current situation and the rational decision of the countermeasures prepare
the command and control agents for an urgent situation and provide them with
autonomous capability without relying on the operation of human beings.

3. IDENTIFYING THREATS AND DECIDING COUNTERMEASURES

To inspire adaptability into our agents, we use soft computing algorithms,1 i.e.,
naṏve Bayesian classiÞer, inductive decision tree algorithms and neural networks,
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and compile the models of threat systems into a set of rules using them. To provide
our agents with rationality, further, we use the decision theory2 that combines
preferences with probabilities, in case of selecting countermeasures.

3.1. Bayes Theorem and Induction Algorithms

Bayes rule examines whether or not a property observed as evidence belongs
to a speciÞc hypothesis (or class), given a set of data distribution. Bayes theorem8,9

can be deÞned as follows:

P (hj | xi) = P (xi | hj )P (hj )∑m
j=1 P (xi | hj )P (hj )

(1)

where

• a set of observable attributes, X = {x1, x2, . . . , xn};• a set of hypotheses in a domain, H = {h1, h2, . . . , hm};
• P (hj | xi) is the posterior probability of the hypothesis hj , hj ∈ H , given that xi , xi ∈ X,
is an observable event.

In our framework, the set of observable attributes,X, consists of the attributes,
as described in Table I, and the hypotheses are a composite of which threat system is
given and how the threat is effective to our agents. Given the set of data as evidence,
Bayes rule allows us to assign probabilities of hypotheses, P (hj | xi). Our agents
compute P (hj | xi) during online and set an alarm when the probability of a speciÞc
threat to them given input is greater than those of any other threat systems.

The decision tree approach such as ID3, C4.5,7 and CN28 is to divide the
domain space into classiÞed regions, which are given by a set of classes C = {c1,
c2, . . . , cm}. The basic idea of the decision tree-based induction algorithms is to
Þnd out a set of ordered attributes, X = {x1, x2, . . . , xn}, which split the data sets
into a correct classiÞcation with the highest information gains Þrst. A decision tree
has internal nodes labeled with attributes xi ∈ X, arcs associated with the parent
attributes and leaf nodes corresponding to classes cj ∈ C.

The decision tree-based induction algorithms, thus, generate a tree representing
a model of various threats to our agents in the simulated electronic warfare setting.
Once the tree is built using training data, the optimal rules from the tree can be
obtained and are applied to a new threat environment to determine whether any
potential attack to our agents is made.

In supervised learning, artiÞcial neural networks1 Þnd a function that approx-
imates the training examples and infer the mapping implied by the examples. The
output of the neural network, thus, shows the computational model of threat systems
that our agents face and provides us with the understanding of the mapping from
the attributes of the threats to the threat systems themselves.

3.2. Compilation of Threats into Rules

Our approach to make adaptive reasoning more reactive is similar in spirit to
methods advocated in Ref. 20. The way of utilizing reactive rules is to rely on results
accumulated during ofßine and to use these resulting rules during online. The ofßine
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computation can be used to summarize regularities given in a sample of situations.
We choose to represent the found regularities as reactive rules dictating which
consequences should be candidates for execution, depending on the circumstances.

Let S be the set of battleÞeld states that the adaptive reasoning agent can
discriminate among, and let L be the set of compilation methods (machine learning
algorithms) that the agent employs. Given a machine learning algorithm l ∈ L, a set
of compiled decision-making rules of an adaptive reasoning agent is deÞned as

ρ1: S → {threat system} (2)

representing whether a speciÞc threat occurs in the state s ∈ S. Thus, various ma-
chine learning algorithms compile the models of threat into different functions ρl ,
each enabling the agent to take advantage of regularities in the environment in a
different way.

Given the compiled knowledge, further, we represent what amount of threats
to our agents are made as follows:

� : KB× S → {threat level}. (3)

In (3), KB is the set of compiled knowledge of the adaptive reasoning agent.
The threat level can be deÞned as a set of vectors with attributes, as described in
Table I, predictive arrival time to our agent, and threat characteristics, which is
speciÞc depending on the threat types, i.e., terminal and nonterminal. We generate
the training examples for the learning algorithms from terminal and nonterminal
threat environments, respectively.

3.3. Deciding Countermeasures against Threats

To be rational in a decision-theoretic sense, the agents follow the principle
of maximum expected utility (PMEU).2 We will show how PMEU can be imple-
mented in the decision-making process of the selection of countermeasures under
uncertainty. Our agents that are equipped with PMEU will select the most appropri-
ate countermeasure to effectively remove threats.

We will use the following notation:

• a set of agents: N = {n1, n2, . . .};• a set of actions of agent ni , ni ∈ N : Ani = {a1i , a2i , . . .}; and• a set of possible world states: S = {s1, s2, . . .}.

The expected utility of the best action, α, of agent ni, arrived at using the body
of information E, and executed at time t , is given bya

EU (α | E, t) = max
a

j

i ∈Ani

∑

k

P
(
sk | E, t, a

j

i

)
U (sk) (4)

a Our notation follows Ref. 2.
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where P (sk | E,t ,a
j

i ) is the probability that a state sk will be obtained after action

a
j

i is executed at time t , given the body of information E; and U (sk) is the utility of
the state sk .

For the purpose of formalizing the decision-making problem of selecting coun-
termeasures against threats, we should model the probabilities and the utilities in
(4). In our model, for example, the probabilityb that a countermeasure would be suc-
cessful is assumed to depend on the jamming signal power, the useful signal power
reßected, the distance between the radar and aircraft, and so on, when jamming
countermeasures are executed. The utility that denotes the desirability of a resulting
state after a countermeasure is executed can be assigned by a single number consid-
ering the type of receivers. We will give the concrete example of the computation
of expected utilities with four countermeasures in the following section.

4. SIMULATION TESTS AND RESULTS

The experiments in this section are designed to evaluate (1) the performances of
threat detection and classiÞcation and (2) those of the decision of countermeasures
against threats. First, we generate and validate the compiled rules by applying them
to simulated electronic warfare settings. We use WEKA (Waikato Environment for
Knowledge Analysis)22 for machine learning techniques. We measure an adaptive
reasoning agent�s performance in terms of the correctness of the threat classiÞcation.
In the second experiment, we measure the decision-theoretic agent�s performance
in terms of the sum of expected utilities of the best countermeasures selected given
a situation.

4.1. Generation of Simulation Data

To test our agent�s performance in various models of multispectral threat data,
we generated the simulation data using three different distributions, i.e., discrete
uniform, Gaussian, and exponential distributions. Given the attributes, as described
in Table I, the information-gathering agent collected the threat data acquired from
the radar, laser, and infra-red receivers, respectively. The threat data through three
distributions were generated within the range of attribute values. To endow our
agent with the inductive models of threat data, then, the threats as training data were
compiled into a set of rules. The resulting models of threats could get closer to
the uncertain patterns of real threats, since these three distributions widely covered
the possible distributions of threat data. Figure 2 shows a part of threat simulator,
which represents the simulation data for radar frequency (RF) based upon discrete
uniform, Gaussian, and exponential distributions.

In the experiment, the distribution of the attribute values was similar to an
actual data set. The attribute values of radar frequency, for example, are depicted in
Figure 2. The x-axis represents the range of radar frequency (RF), which actually

b Refer to our concurrent work21 for details.
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Figure 2. The three distributions of radar frequency (RF) attribute values for the class of middle-
and long-range radar and track. The size of data set is 10,000.

ranges from 4000 to 8000 MHz, and the y-axis shows the number of training
examples given distributions.

4.2. Learned Condition�Action Rules in Electronic Warfare Settings

To construct compiled rules for our agents, we used three machine learning
algorithms: naṏve Bayesian classiÞer, C4.5, and multilayer perceptron. Hence, the
set of compilation methods L, as described in (2), was {naṏve Bayes (= l1), C4.5
(= l2), multilayer perceptron (= l3)}. For the naṏve Bayesian classiÞer, the results
are represented as rules specifying the probability of occurrence of each attribute
value given a class,8 in our case �threat system.� C4.5 represents its output as a
decision tree, and the trained result of multilayer perceptron is a mapping from the
attributes of threats to the threat systems as a function. We now describe the agent�s
compiled knowledge by using the above learning algorithms.

For each target in an electronic warfare setting, the training data for radar and
laser receivers were obtained as a tuple of attribute values described in Table I, and a
class, for instance, �missile� as a mobile terminal threat and �long-range search� as
a nonterminal threat. The numbers of classes for the terminal threats acquired from
radar and laser receivers were three and four, respectively, and there were Þve classes
and one class for the nonterminal threats received from radar and laser receivers,
respectively. The instances consisting of the attribute values and the classes were
fed into the learning algorithms as training data.

The learning algorithms l1�l3 then compiled the training data into a different set
of rules ρl, as deÞned in (2). The learned state-action rules take into account only the

International Journal of Intelligent Systems DOI 10.1002/int



522 NOH AND JEONG

Figure 3. A learned decision tree obtained by C4.5 using WEKA.20

properties of one type of receivers at a time, not of the whole conÞguration. In other
words, the threats acquired from the radar and the laser receivers were separately fed
into the compilation methods. As an example, a decision tree obtained using C4.5
(= l2) for these attributes is depicted in Figure 3. Based on the resulting decision
tree for a nonterminal threat system, one of compiled rules in ρl2 is �if pulse width
>1.3 and pulse power>239.3 and radar frequency>208, then early alarm radar.�

4.3. Performance of Compiled Rule Sets

To evaluate the quality of various rule sets generated by different learning
algorithms, the performance obtained was expressed in terms of the correctness of
the threat classiÞcation. As a Þrst step, to Þnd a meaningful size of the training
set, which could guarantee the soundness of the learning hypothesis, we generated
several sets of training examples using three different distributions, i.e., discrete
uniform, Gaussian, and exponential distributions. As the number of the training
examples increased, in general, the resulting performance improved sharply up to
a certain point, after which performance leveled off. We found that the sufÞcient
number of training instances was 100. For the radar receiver, the performance
was the best in case of the normal distribution, and, for the laser receiver, the
best performance was achieved, when the exponential distribution was used. The
learning curves that represent the resulting performances (%) vs. the sizes of training
examples for the radar receiver given normal distribution and the laser receiver given
exponential distribution are depicted in Figures 4 and 5, respectively.

For radar receiver, the naṏve Bayesian classiÞer learned the function of the
classiÞcation of threat systems quickly, as shown in Figure 4. The best performance
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Figure 4. Resulting performances (%) vs. the training data size for radar sensors.

of naṏve Bayesian classiÞer correctly classiÞed 100%, whereas those of C4.5 and
multilayer perceptron did 96% and 99%, respectively. On the other hand, for laser
receiver, the best performance of 98.3% was achieved by the rules compiled using
C4.5, as depicted in Figure 5. The performance obtained by decision-tree based
induction algorithm C4.5 was better than those of naṏve Bayesian classiÞer and
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Figure 5. Resulting performances (%) vs. the training data size for laser sensors.
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Table II. Performances of compilation methods for radar and laser receivers.

Receiver Types Compilation Methods Performances

Radar Naṏve Bayes 100.0 ± 0.00
C4.5 95.0 ± 0.94
Multilayer Perceptron 98.3 ± 1.34

ANOVA 72.41

Laser Naṏve Bayes 95.8 ± 1.40
C4.5 97.4 ± 1.35
Multilayer Perceptron 95.8 ± 1.48

ANOVA 4.30

multilayer perceptron. The best performance of naṏve Bayesian classiÞer through
the training data for laser receiver correctly classiÞed 95.8%.

We applied the compiled state-action rules ρl , obtained by different learning
methods l, into newly generated 10 sets of 100 scenarios and could get the perfor-
mances of the learning methods, as described in Table II.

We analyzed the performance results in Table II using the standard analysis of
variance (ANOVA) method. Since the computed values of f = 72.41 and f = 4.30
in ANOVA exceed 5.39 (= f .01,2,27) and 3.32 (= f.05,2,27) from the F distribution,
we know that our agents, controlled by three different methods, in both of threat
situations detected using radar and laser sensors were not all equally effective at the
0.01 level and 0.05 level of signiÞcance (i.e., the differences in their performance
were not due to chance with probability of 0.99 and 0.95), respectively. In Table II,
the average performance of our agent using naṏve Bayesian classiÞer in a threat
situation from radar receiver�s perspective was slightly better than those of C4.5 and
multilayer perceptron, whereas the agent with rules compiled by C4.5 outperformed
the other agents with rules compiled by naṏve Bayes and multilayer perceptron in a
threat situation simulated through laser receiver.

4.4. Determining the Rational Choice of Countermeasures

As a simple example, let us consider an electronic warfare scenario. This
scenario has a command and control agent confronting a speciÞc threat. The mis-
sion of our agents is to autonomously decide and execute their countermeasures
to a speciÞc threat. The agent is assumed to be equipped with four countermea-
sures, Ani = {chaff, ßare, RF jamming, IR jamming}. In this example scenario, our
agent identiÞes a threat through only a missile-warning receiver (MWR), which is
scenario 2 in Table III. According to the types of receivers, the countermeasures that
can be applicable are limited, and, in this case, only the ßare and IR jamming can
be useful, as described in Table III.

Given the situation at hand, our agents following the decision theory should
choose a countermeasure that maximizes their expected utility, as described in (4).
First, the probabilities that each countermeasurewould be successful can be acquired
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Table III. Payoff matrix of utilities in electronic warfare settings.

Type of Receivers Utility Values of Countermeasures

Scenarios RWR MWR LWR Chaff Flare RF Jamming IR Jamming

1 © 0.393 � 0.551 �
2 © � 0.393 � 0.551
3 © � � � �
4 © © 0.393 � 0.551 �
5 © © 0.393 � 0.551 �
6 © © � � � �
7 © © © 0.393 � 0.551 �

RWR: Radar-warning receiver, MWR:Missile-warning receiver, and LWR: Laser-warning receiver.

through the computation in our concurrent work21 as follows:

• P (Resultsuccess (ßare) | Do(ßare), E, t) = 0.781;
• P (Resultsuccess (IRjam) | Do(IRjam), E, t) = 0.486.

Second, the utility that denotes the desirability of a resulting state after a
countermeasure is executed can be summarized in Table III. The utility values of
RF jamming and IR jamming are greater than those of the chaff and ßare, and their
speciÞc utility values can be obtained from the utility function, 1/(1− e−λx), where
λ is the constant of 0.1 and x is a real value between 1 and 10, which is corresponding
to one of the countermeasures. When no countermeasures are successful, the utility
value that our agents can have is assumed to be 0.095, where the value of x is 1.

Thus, the expected utilities of the command and control agent�s alternative
countermeasures, as deÞned in (4), are

EU (ßare | E, t) = 0.781× 0.393+ 0.219× 0.095 = 0.328,

EU (IRjam | E, t) = 0.486× 0.551+ 0.514× 0.095 = 0.317.

In this example scenario, thus, our command and control agents will take the
action of the ßare as their best countermeasure.

To evaluate the quality of the decision-making process of countermeasures
against threats in electronic warfare settings, the resulting performance was ex-
pressed in terms of the cumulative expected utilities. The cumulative expected
utilities are deÞned as the sum of expected utilities after 30 selections of counter-
measures have been made. The average of the cumulative expected utilities through
10 sets of 30 selections was summarized in Figure 6.

In this experiment, the strategies for selecting the countermeasures are as
follows:

• α strategy: the selection of the countermeasure that has the highest expected utility;
• β strategy: the selection of the countermeasure that has the highest probability represent-
ing its success, when it is executed; and

• γ strategy: the random selection of the countermeasure.
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Figure 6. The sum of performances (expected utilities) vs. the number of trials for the selection
of alternative countermeasures.

As we expected, in Figure 6, the performance achieved by our agents following
the decision theory was better than that of the agent guided by the random selection
strategy. The performance of β strategy was similar to that of the random selec-
tion strategy. Compared with the performance, 6.7959, of the random agents, the
performance, 7.8707, of our agent was increased by 15.81%.

5. CONCLUSION

In time-critical settings, autonomous agents need to quickly recognize a given
situation and to rationally react to it. Our work contributes to situation awareness,
when robust autonomy is crucial. In this paper, we present a fully autonomous
command and control agent in electronic warfare settings. From the command
and control agent�s perspectives, we showed the whole decision-making process
of threat detection, classiÞcation, and the selection of alternative countermeasures
against threats.

For the threat detection and classiÞcation, we analyzed threat systems into a
set of attributes and formulated a compilation method that endows our agents with
reactivity. The reactive rules compiled by machine learning algorithms exploited
the regularities of domains. Our agents then were able to classify threats using
the compiled rules. To be rational in dynamic electronic warfare settings, further,
our agents were capable of choosing and executing countermeasures to threats, as
maximizing their expected utilities.

We tested our agent�s performance in simulated electronic warfare settings.
The threat data in these settings were generated using discrete uniform, Gaussian,
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and exponential distributions, which got closer to real threats. The preliminary
experiments revealed that the compiled rules were useful to accurately report the
given situation and to mine speciÞc patterns from complex situations, and the
computation of the expected utilities made our agents rationally operational in
dynamic environments.

As part of our ongoing work, we are performing a set of experiments with all
possible conÞgurations of threat systems and are implementing a threat simulator.
We will integrate various threat systems into a uniÞed battleÞeld scenario and
continuously test our agent�s rationality with a tapestry of scenarios. We hope to
be able to reduce the total number of false alarms, to successfully remove threats
through our future work, and to apply our framework to other time-critical domains.
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